
Symmetry properties of exact energy solutions to the Harper equation and related q-

normalizations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 6615

(http://iopscience.iop.org/0305-4470/33/37/313)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/37
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 6615–6626. Printed in the UK PII: S0305-4470(00)10583-9

Symmetry properties of exact energy solutions to the Harper
equation and related q-normalizations

E Papp and C Micu
Department of Physics, Str. Victoriei 76, North University of Baia Mare, RO-4800 Baia Mare,
Romania

E-mail: epapp@arad.ro

Received 4 January 2000, in final form 17 July 2000

Abstract. Proofs are given that exact solutions to the wavefunctions of the Harper equation can
be established in an explicit manner by resorting to three-term recurrence relations implied by a
q-calculus approach proposed previously. The q-normalization of wavefunctions resulting in the
appearance of peaks is discussed. The exact Q = 6 energy solution has also been derived and
analysed in some more detail. There are reasons to say that fractal structures concerning band and
gap distributions have to be accounted for if Q � 6.

1. Introduction

The discrete second-order Harper equation [1–4] is a long standing problem [5–9], which has
received renewed interest in several fields such as level statistics in quantum systems with
unbounded diffusion [10, 11], ultracold atoms in bichromatic light waves [12], mesoscopic
rings threaded by a magnetic flux [13], microwave realizations [14] and last but not least
the fractional quantum Hall effect [15]. Challenging mathematical problems such as the
hierarchical multifractal structure of the Harper spectrum [7, 16], relationships between self-
similarity, quasiperiodicity and localization [17–19], links between hierarchical multifractality
and semi-Poisson bandwidth distributions [20], or the derivation of generalized fractal
dimensions [21], have also been investigated. On the other hand, implicit Bethe ansatz-
like solutions have been presented by starting from a symmetrized q-difference form of this
equation [22]. It is understood that this equation refers to the middle point of the Brillouin-
zone, i.e. to k1a = k2b = π/2. The components of the wavevector are ki (i = 1, 2), whereas
a and b are the lattice spacings, as usual. The q-parameter alluded to above has the form
q = exp(i πβ), where β = /0 is a commensurability parameter expressing the number
of flux quanta per unit cell. Here we are concerned with rational β-values like β = P/Q,
where P and Q are mutually prime integers. Accordingly, q2 Q = 1, so that the Q-parameter
is responsible for the dimension of the related SLq(2) representation [22]. This results in
multiplets for which Q = 1, 2, 3, . . . , respectively. However, so far explicit solutions have
been discussed in some detail for the zero energy only [23]. This motivates us to look for the
derivation of further explicit solutions, their symmetry properties included.

In this context the first five energy multiplets (Q = 1, 2, . . . , 5) to the symmetrized
q-difference Harper equation mentioned above

Hψ(z) = i

(
1

z
+ qz

)
ψ(qz) − i

(
1

z
+

z

q

)
ψ(q− 1z) = Eψ(z) (1)

0305-4470/00/376615+12$30.00 © 2000 IOP Publishing Ltd 6615



6616 E Papp and C Micu

have been established in an explicit manner by resorting to the q-calculus [24]. This amounts to
apply the Jackson derivative [25, 26], which has also been reintroduced recently in connection
with the radial reduction of the covariant SOq(N) derivative [27, 28]. Besides deriving the
exact Q = 6 energy solution, we shall then use this opportunity to present additional comments
concerning the symmetry attributes of energy multiplets. Typical patterns exhibited in the
field dependence of the Q = 6 solution will be discussed in some more detail. We shall
also derive explicit results concerning the wavefunctions, with a special emphasis on pertinent
q-normalizations.

2. Preliminaries and notation

Using the symmetrized Jackson derivative

∂(q)
z f (z) = dqf (z)

dqz
= f (qz) − f (q−1z)

z(q − q−1)
(2)

enables us to rewrite (1) equivalently as(
∂(q)

z + z∂(q)
z z

)
ψ(z) = Wψ(z) (3)

where

W = −i
qE

q2 − 1
. (4)

Accordingly, E = E∗ if W = W ∗, where the star superscript denotes complex conjugation.
It is also clear that E = 0 if q2 = 1, whereas E = ∓2W if q = ±i. So the q2 = 1 choice
represents a special limiting case for which E = 0 irrespective of W , so that it can be ruled
out in the following. Polynomial solutions like

ψQ(z) =
Q−1∑
n=0

cnzn (5)

where c0 = 1, can then be established by virtue of the three-term recurrence relation

[n + 1]qcn+1 + [n]qcn−1 = Wcn (6)

where

[n]q ≡ q1−n[[n]]q2 = qn − q−n

q − q−1
. (7)

Accordingly, the energies are established by virtue of the algebraic equation

cQ ≡ cQ(q, W) = UQ(q, W)

[[Q]]q2 !
�= 0. (8)

The numerator exhibits the general form

UQ = UQ(q, W) = qωQP (Q)
γQ

(q2, W) �= 0 (9)

which comes from a reasonable generalization of concrete results derived before [24]. One
has

γQ =
{

Q(Q − 2)/2 Q = even
(Q − 1)2/2 Q = odd

(10)
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where ωQ = I (Q/2) denotes the largest integer part of Q/2. We then have to solve in terms
of W the algebraic equation

P (Q)
γQ

(q2, W) = 0 (11)

where P (Q)
γQ

is a polynomial of degree Q and γQ in W and q2, respectively. This yields a
number of Q ordered real energy solutions like

E
(Q)
l (q) = E

(Q)∗
l (q) = −E

(Q)
l (1/q) = i

q
(q2 − 1)q2−Qw̃

(Q)
l (q2) (12)

increasing with l, where l = 1, 2, . . . , Q and q∗ = 1/q, and where the star superscript denotes
complex conjugation.

After having arrived at this stage, some further remarks are in order. First, it should be noted
that the w̃

(Q)
l (q2) factor is expressed by continued square-root expressions with a complexity

increasing with Q. We should also note that the energies established in this manner exhibit
the symmetry property

E
(Q)
l (q) = −E

(Q)
Q−l+1(q). (13)

This shows that the energy values are centred around E
(Q)

(Q+1)/2(q) = 0 if Q is an odd number.
In addition, (13) indicates that −E is an energy solution if E is also an energy solution, and
conversely. The energy reflection-symmetry implied in this manner can be understood in
terms of the transfer-matrix approach [4, 29] or by invoking the underlying SLq(2) symmetry
[30]. One notes that the energies presented above agree with those defined by virtue of the
Bethe ansatz (BA) method. Choosing, for example, Q = 2 and using (5) and (6) presented in
[22], one finds zBA

1 = ±iq and E
(2)
BA = ∓2. Then W

(2)
BA = ±1, which reproduces identically

(25) in [24].

3. The derivation of the Q = 6 energy solution

Next we have to say that closed formulae become both lengthy and hardly derivable if Q � 6,
so that we have to resort, in general, to numerical evaluations. So one has

P
(6)
12 (q2, W) = q12W 6 − (

q20 + 3q18 + 6q16 + 10q14 + 15q12 + 10q10 + 6q8 + 3q6 + q4
)

W 4

+
(
q24 + 5q22 + 16q20 + 33q18 + 53q16 + 71q14 + 81q12 + 71q10 + 53q8

+33q6 + 16q4 + 5q2 + 1
)
W 2 − (

q24 + 4q22 + 10q20 + 18q18 + 27q16

+34q14 + 37q12 + 34q10 + 27q8 + 18q6 + 10q4 + 4q2 + 1
)

(14)

for Q = 6. Of course (14) is a direct byproduct of recurrence relations, which also means that
the q2Q = 1 fixing has not yet been carried out. First, we have to state that the numerical results
produced by (11) and (14) are W

(6)
1 = −W

(6)

6 = −3.086 130, W
(6)
2 = −W

(6)

5 = −1.514 136
and W

(6)
3 = −W

(6)
4 = −0.428 006 for typical q-values like q = exp(i(2n + 1)π/6), where

n = 0, 2, 3, 5, . . . . However, equation (14) is exactly solvable by applying standard formulae
for cubic equations. This yields six (now non-ordered) W -roots like

W̃
(1)
± (q) = ±(

F
1/3
+ + F

1/3
−

)
(15)

W̃
(2)
± (q) = ±(

ε+F
1/3
+ + ε−F

1/3
−

)
(16)

and

W̃
(3)
± (q) = ±(

ε−F
1/3
+ + ε+F

1/3
−

)
(17)
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Table 1. The coefficients bn and cn characterizing the S and D functions.

n bn cn cn+13

0 844/3 9 363 772 86 850
1 1604/3 18 179 350 32 825
2 4136/9 16 628 084 10 896
3 9704/27 14 327 772 3 093
4 772/3 11 625 408 722
5 505/3 8 876 342 130
6 896/9 6 370 892 16
7 473/9 4 291 796 1
8 73/3 2 707 724 0
9 86/9 1 595 100 0

10 3 873 785 0
11 2/3 442 612 0
12 2/27 205 742 0

where

ε± = −1

2
± i

√
3

2
(18)

and

F± = −S

2
±

√
D. (19)

Furthermore,

S = −
12∑

n=0

bnγ2n (20)

and

D = − 1

108

20∑
n=0

cnγ2n (21)

where

γ2n = q2n + q−2n. (22)

The coefficients characterizing (20) and (21) are displayed in table 1, so that the Q = 6 energy
solution is completely determined.

Using (4) and (15)–(17) produces the original energies as

E
(i)
± ≡ −Ẽ

(i)
± (q) = −2 sin

πP

6
W̃

(i)
± (q) (23)

where now q = exp(iπP/6) and i = 1, 2, 3. Next we note that useful information concerning
typical patterns can be established by analysing the x ≡ P dependence of Ẽ

(i)
± (q) such as

given by (23). This amounts to considering the real and imaginary parts characterizing Ẽ
(i)
± (q).

Note that, except for the zero energy, both Re Ẽ
(1)
+ (q) and Im Ẽ

(1)
+ (q) are characterized by an

irregular fractal-like behaviour characterizing selected x points and/or x regions, as shown in
figure 1. This concerns x points for which the quotient P/Q is reducible, i.e. for x = 2, 3
and 4, although for x = 4 the magnitude of Im Ẽ

(1)
+ (q) is negligibly small. In addition, we

remark that Im Ẽ
(1)
+ (q) is zero in the complementary x regions. Such regions should then
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Figure 1. The x ≡ P dependence of Re Ẽ
(1)
+ (q) (full curve) and Im Ẽ

(1)
+ (q) (broken curve) for

0 � x � 6.

be viewed as being responsible for the pertinent band structure. Next, note the broad fractal
structures centred around x = 3 in the x dependence of both Re Ẽ

(1)
+ (q) and Im Ẽ

(1)
+ (q). This

indicates that within this latter region we have to account for the onset of an energy gap,
this time exhibiting a larger width. In contradistinction, the gaps relying on x = 2 and 4
have a rather small and negligible width, respectively. Further sequences of competing band
and gap structures are located dominantly within 2 � x � 4 for i = 2 and 3, as shown in
figures 2 and 3, respectively. Such sequences are enclosed within two large gaps. Indeed, both
Im Ẽ

(2)
+ (q) and Im Ẽ

(3)
+ (q) exhibit fractal structures for 0 < x � 2 and 4 � x < 6, so that

these latter regions are characterized by energy gaps only. It should also be mentioned that
the x dependence of Re Ẽ

(i)
+ (q) and Im Ẽ

(i)
+ (q) is periodic with period T = 2Q = 12, which

proceeds, of course, irrespective of i = 1, 2 and 3. We have to mention that competitions
between band and gap structures have also been established in the case of one-dimensional
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Figure 2. The x ≡ P dependence of Re Ẽ
(2)
+ (q) (full curve) and Im Ẽ

(2)
+ (q) (broken curve) for

0 � x � 6. Note a sequence of competing bands and gaps which is located approximately within
2 � x � 4.

fermion systems with incommensuration, as shown in figure 1 in [29]. These latter results are
able to support interpretations made above, as (1) represents a particular case of such systems.
Moreover, performing a fractal analysis of band and gap structures displayed in figures 2 and 3
may result, at least tentatively, in the derivation of statistical distributions, like those presented
before [20].

The special patterns displayed in figures 1–3 can be understood as fingerprints of the
celebrated Hofstadter butterfly characterizing the Harper spectrum [6]. This differs, however,
from the x ≡ P dependence exhibited by the energies previously found for Q = 1, 2, . . . , 5
[24], for which the imaginary parts are definitely zero.
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Figure 3. The x ≡ P dependence of Re Ẽ
(3)
+ (q) (full curve) and Im Ẽ

(3)
+ (q) (broken curve) for

0 � x � 6. A sequence of competing bands and gaps is located again within 2 � x � 4.

4. The q-normalization of wavefunctions

The wavefunctions characterizing (1) are polynomials in z of degree Q − 1, in accord with
the dimension of SLq(2) representations [22]. In addition, an explicit zero-energy solution
has also been derived [31]. On the other hand, equation (3) can be viewed as a q-deformed
wave equation, in which the pertinent deformation parameter is a root of unity exhibiting an
inherent physical meaning. This shows, in turn, that corresponding wavefunctions have to be
normalized definitely by resorting to the q-integral [26, 32]. For this purpose we have to keep in
mind the fact that novel features are able to emerge by virtue of the more general significance of
the quantum-group description [33]. Of course, there are also other solvable physical systems
exhibiting inherent quantum-group symmetries, such as the SUq(2) symmetry characterizing,
for example, the Heisenberg XXZ spin-chain [34]. Moreover, the non-commutative Euclidean
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space is described by a corresponding deformation parameter, which leads to the onset of the
radial q-derivative, too (see, e.g., [28]). Either way, the application of the q-calculus provides
the proper treatment of q-deformed wave equations, which results in further generalizations
and interesting rich structures.

We next perform the q-normalization needed by choosing, for convenience, the
normalization interval z ∈ [−1, 1], such that z∗ = z. Accordingly, one deals with the q-
integral [26, 32]∫ 1

−1
f (z) dqz =

(
q − 1

q

) ∞∑
j=0

1

q2j+1

(
f

(
1

q2j+1

)
+ f

( −1

q2j+1

))
(24)

where |q| > 1, while a similar integral can also be established for |q| < 1. Accordingly,∫ 1

−1
zn dqz = 1

[n + 1]q

zn+1 |1−1 (25)

which works irrespective of q and which produces non-zero values for even n-exponents
provided, of course, that [n + 1]q �= 0. Conversely, one has

dqzn+1

dqz
= [n + 1]qzn (26)

which shows clearly that the above q-integral comes precisely from the inversion of the q-
derivative (2). These results open the way to the consistent q-normalization of wavefunctions.

First we have to remark that applying (5) and (6) yields, up to normalization constants,
the wavefunctions ψ1(q, z) = 1,

ψ2(q, z) = 1 + Wz (27)

and

ψ3(q, z) =
(

1 + Wz +
q

q2 + 1

(
W 2 − 1

)
z2

)
(28)

for Q = 1, 2 and 3. So W
(1)
l1

= 0, W
(2)
l2

= ±1 and

W
(3)
l3

= − 1

q

√
q4 + 3q2 + 1, 0,

1

q

√
q4 + 3q2 + 1 (29)

where now l2 = −1, 1 and l3 = −1, 0, 1. These energies yield the explicit wavefunctions

ψ
(±)
2 (q, z) = 1 ± z (30)

ψ
(0)
3 (q, z) = 1 − q

q2 + 1
z2 (31)

and

ψ
(±)
3 (q, z) =

(
1 ± 1

q

√
q4 + 3q2 + 1 z +

q2 + 1

q
z2

)
(32)

which can be readily normalized by virtue of (25). We then find the amplitudes

I
(±)
2 (q) = 1

2

∫ 1

−1

∣∣ψ(±)
2 (z)

∣∣2
dqz =

(
q2 + 1

)2

q4 + q2 + 1
± q (exp(4iπ) − exp(2iπ))

q2 + 1
(33)

I
(0)
3 (q) = 1

2

∫ 1

−1

∣∣ψ(0)
3 (z)

∣∣2
dqz

= 1 − 2q3

(q2 + 1)(q4 + q2 + 1)
+

q6

(q2 + 1)2(q8 + q6 + q4 + q2 + 1)
(34)
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Figure 4. The ω dependence of
∣∣I (0)

3 (q)
∣∣. The present peaks looking like sextuplets rely on

the Ps -pairs (1, 2), (4, 5), (7, 8), (10, 11), (13, 14) and (16, 17). The valleys correspond to
Pv = 3, 6, 9, 12, 15 and 18. A further superposition begins to appear for Ps = 19.

and similarly for ψ
(±)
3 (q, z). The 1

2 -factors in the front of normalization integrals have been
inserted just for convenience. The normalized wavefunctions are then given by

ϕ
(lQ)

Q (q, z) = ∣∣2I
(lQ)

Q (q)
∣∣−1/2

ψ
(lQ)

Q (q, z). (35)

It is also clear that the last term in the right-hand side of (33) is subject to regularization, as in
this case [2]q = 0. One would then obtain∣∣I (±)

2

∣∣ = |±2i| = 2 (36)

which expresses the regularized version of (33) under the q2 = −1 limit. Next, one has the
symmetry property

ψ
(lQ)

Q (q, z) = ψ
(lQ)∗

Q (q, z) = ψ
(lQ)

Q (1/q, z) (37)



6624 E Papp and C Micu

which proceeds in conjunction with (12). We remark that the wavefunctions corresponding to
different W energies are not automatically orthogonal. Indeed, choosing, for example, Q = 2
and inserting q2 = −1 one obtains∫ 1

−1
ψ

(1)∗
2 (q, z)ψ

(−1)
2 (q, z) dqz = 4

2 + q2
= 4 (38)

where W = ±1. The understanding is that one has E = ±2 in both cases. Indeed, using the
Harper Hamiltonian yields

H(1 ± z) = ∓2i

q
(1 ± z) (39)

so that

H2(1 ± z) = 4(1 ± z) (40)

where q = ±i. This shows that the non-orthogonality mentioned above is safely explained.
Inserting q ≡ exp(iω) and considering, for example, that ω ∈ [0, 20], we found that

the ω dependence of I
(lQ)

Q (q) is characterized by peaks. Furthermore, we have to realize
that peaks implied in this way serve to reveal the very structure of the commensurability
parameter β = P/Q. Choosing, for instance, Q = 3, one has admissible P -values like Ps =
1, 2, 4, 5, 7, 8, . . . , which are not divisible by 3. In contradistinction, there are complementary
P -values like Pv = 3, 6, 9, 12, 15, . . . , which have to be ruled out. Correspondingly, the ω

dependence of
∣∣I (0)

3 (q)
∣∣, where now l3 = 0, is characterized by peaks looking like sextuplets,

which are centred around Ps-pairs such as given by (1, 2), (4, 5), (7, 8), . . . , as illustrated in
figure 4. The forbidden Pv-values are then responsible for smooth ‘valleys’ lying in between
like Pv = 3, 6, 9, . . . . We can then say that such peaks can be viewed as genuine manifestations
of the multifractality of the Harper spectrum, now for non-integer but rational values of the
commensurability parameter. Other cases can be treated in a similar manner.

5. Conclusions

In this paper the Q = 6 energy solution to the Harper equation has been derived and discussed.
The x ≡ P dependence of the energies established in this manner is characterized by special
patterns indicating the existence of fractal-like energy-band and energy-gap distributions, as
shown in figures 1–3. Such gaps rely on x regions in which the imaginary part of the energy
is non-zero. This provides useful insights towards a deeper understanding of the multifractal
attributes of the Harper spectrum. Thus one deals with with energy levels if Q = 1, 2, 3, 4, 5.
In contradistinction, competitions between gap and band structures are exhibited in the x ≡ P

dependence of related energies if Q � 6. It should also be mentioned that band structures can
also be established in terms of non-unitary representations of pertinent spectrum-generating
algebras, as shown recently for Scarf and Lamé Hamiltonians [35]. Further, we have succeeded
in deriving closed formulae to the wavefunctions of the symmetrized q-difference form of the
Harper equation. The q-normalization of such wavefunctions has been performed for the first
time, now by applying the Jackson q-integral needed. The interesting point is the fact that the
I

(Q)
lQ

magnitudes of wavefunctions mentioned above lead to the appearance of peaks located
around selected P -values for which the quotient P/Q is indivisible. The complementary
P -values serve as separation points which are responsible for intermediary smooth bottomed
valley-like structures, as shown in figure 4.

The conversion of the original Harper equation into the symmetrized q-difference equation
is also worthy of note [36]. We emphasize, however, that for this purpose related but different
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conversions proceeding in conjunction with admissible q-values can also be considered. It
should also be mentioned that the band-energy spectrum of the Harper equation should be
properly established by accounting for the ki dependence of the Bloch wavefunction ϕB . This
results in a more general second-order discrete equation like(

exp(iθ1)

qn+α1+1/2
+

qn+α2+1/2

exp(−iθ2)

)
ϕ(n + 1) +

(
qn+α1−1/2

exp(iθ1)
+

exp(−iθ2)

qn+α2−1/2

)
ϕ(n − 1) = Eϕ(n) (41)

where ϕ(n) = ϕB(na), a = b and θi = kia. This comes from the ‘chiral’ gauge proposed
before [37], by now choosing the vector potential as

Ai = −B(x1 + x2 + αia) (42)

such that xi = nia, x1 + x2 = na and n = n1 + n2, where ni are integers. The q-difference
counterpart of (41) is then easily obtained via ψ(z) = ϕ(n) and z = qn. Generalized BA
equations concerning equations like (41) have already been proposed [38]. However, the
derivation of explicit solutions is still an open problem which deserves further attention.
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